“我去找萨曼莎!”舒云鹏跳了起来,但琼斯『露』『露』拦住了他。
我们根本不知道这只手套分别寄到了那个地方,但是当北京的人打开发现是右手时,我们就会想到寄到武汉的一定是左手,这是一个我们认为的常识,因为左右手是配对的。由于寄送的过程中我们并不确定,无法认定哪一个是左手,哪一个是右手,可是当我们看到寄到的一边是哪只时,我们会很轻易的想到另一只。
但是在量子力学里,科学家的大量的实验证明,如果把同一量子体系分成一个部分,当你检测出这其中的一种状态的时候,其余的部分会立即调整到相应的状态。能够觉察到并且还能调整自己的位置状态,就像一个有生命有智慧的生命体,的确,想想都会觉得可怕。这就是我们常看到的“量子纠缠”,是不是这样说就理解了呢。
“你别去,”琼斯『露』『露』说:“萨曼莎不会把月亮怎样的。”
如果你对量子力学的概念感到困『惑』,不要慌,我相信你并不是唯一的一个。正如物理学家费恩曼所说的:“我想我可以有把握地说,没有人理解量子力学。”
然而,量子理论却渗透到我们生活的方方面面,它描述了我们生活的这个世界是如何运作的。例如,我们每天沐浴在太阳光之中,你可曾思考过为什么太阳会发光?如果你不懂量子力学,就无法理解其中的奥妙。
生物学是一种化学,而化学是一门应用物理学。
从长远来看的话,一切都是量子的。如果没有量子力学的解释,我们目前对世界如何运转的大部分法都不能成立,现代技术世界的一大半成果都不可能出现。而如今,越来越多的研究证明,量子力学不仅仅作用于非生命现象,在生命现象中仍旧起关键作用。没有量子力学,我们就无法解释酶的催化(量子隧穿)、光合作用(量子漫步)、鸟的导航(量子纠缠)、鱼的嗅觉(量子自旋)、基因突变(量子跃迁)等生命现象。
“那行,我暂时不去,”舒云鹏又坐了下来:“『露』『露』,你能不能告诉我,你是怎么想的?”
质子的位置是有量子而不是经典物理定律决定的。使生命成为可能的遗传密码毋庸置疑是量子密码。基因突变是遗传『性』变异的推手,而遗传『性』变异让最简单的微生物进化成了如今地球上『色』彩斑斓、物种极度丰富的生物界。如果时间充裕,微小的失真也会引起巨大的变化。进化“通过保护和积累极其微小的可遗传改进”得以继续。
生命之舟驾驭着混沌之力,乘风破浪。
生命就像一艘船,狭窄的龙骨植根于量子岩层,它可以利用量子现象,比如量子隧穿或者量子纠缠维持自身的存在。在这种情况下,热力学风暴有助于活细胞维持与量子世界的联系,而不是破坏它的量子相干『性』。死亡可能意味着生命丧失了有序的量子力学『性』质, 生命之舟在海上徒劳地抵抗着热力学的风暴。生命驾驭着混沌之力,在经典世界与量子世界之间狭窄的边缘上,乘风破浪。
量子世界有很多奇异的『性』质,这些奇特的『性』质在生命现象中都会出现。
在微观的量子世界中,粒子们的奇特『性』质包括:同时做两件事(量子自旋)、能穿墙而过(量子隧穿)、具有幽灵般的联结等(量子纠缠)。这些奇特的『性』质之所以没有出现在宏观的经典世界,是因为分子间的“测量”。而在生命中,这些分子特异『性』都会存在。
“我?……”琼斯『露』『露』一愣,她没想到舒云鹏会问她这个:“我说不好……你别奇怪,我真的说不好。”
近距离伽马暴可能灭绝任何比微生物更加复杂的生命形式。由此,两位天文学家声称,只有在大爆炸发生50亿年之后,只有在10%的星系当中,才有可能出现类似地球上这样的复杂生命。
宇宙或许比先前人们想象的要更加孤单。两位天体物理学家声称,在可观测宇宙预计约1000亿个星系当中,仅有十分之一能够供养类似地球上这样的复杂生命。而在其他任何地方,被称为伽马暴的恒星爆炸会经常『性』地清除任何比微生物更加复杂的生命形式。两位科学家说,这些的爆炸还使得宇宙在大爆炸后数十亿年的时间里,无法演化出任何复杂的生命。
科学家一直在思考这样一个问题,伽马暴有没有可能近距离击中地球。这种现象是1967年被设计用来监测核武器试验的人造卫星发现的,目前大约每天能够检测到一例。伽马暴可以分为两类。短伽马暴持续时间不超过一两秒钟;它们很可能是两颗中子星或者黑洞合二为一的时候发生的。长伽马暴可以持续数十秒钟,是大质量恒星耗尽燃料后坍缩爆炸时发生的。长伽马暴比短伽马暴更罕见,但释放的能量要高大约100倍。长伽马暴在短时间内发出的伽马『射』线,可以比全宇宙都要明亮。
持续数秒的高能辐『射』本身,并不会消灭附近一颗行星上的生命。相反,如果伽马暴距离足够近,它产生的伽马『射』线就有可能触发一连串化学反应,摧毁这颗行星大气中的臭氧层。没有了这把保护伞,这颗行星的“太阳”发出的致命紫外线就将直『射』行星地表,长达数月甚至数年——足以导致一场大灭绝。
这样的事件发生的可能『性』有多高?在即将发表在《物理评论快报》(physical review letters)上的一篇论文中,以『色』列希伯莱大学的理论天体物理学家斯维·皮兰(tsvi piran)和西班牙巴塞罗纳大学的理论天体物理学家保罗·希梅内斯(raul jimenez)探讨了这一灾难『性』的场景。
天体物理学家一度认为,伽马暴在星系中气体正迅速坍缩形成恒星的区域里最为常见。但最近的数据显示,实际情况要复杂许多:长伽马暴主要发生在“金属丰度”较低的恒星形成区域——所谓“金属丰度”,是指比氢和氦更重的所有元素(天文学家所说的“金属”)在物质原子中所占的比例。
利用我们银河系中的平均金属丰度和恒星的大致分布,皮兰和希梅内斯估算了银河系内两类伽马暴的发生几率。他们发现,能量更高的长伽马暴可以说是真正的杀手,地球在过去10亿年间暴『露』在一场致命伽马暴中的几率约为50%。皮兰指出,一些天体物理学家已经提出,可能正是伽马暴导致了奥陶纪大灭绝——这场发生地45亿年前的全球灾变,消灭了地球上80%的生物物种。
接下来,这两位科学家估算了银河系不同区域内一颗行星被伽马暴“炙烤”的情形。他们发现,由于银河系中心恒星密度极高,距离银心6500光年以内的行星在过去10亿年间遭受致命伽马暴袭击的几率高达95%以上。他们总结说,复杂生命通常只可能生存于大型星系的外围。(我们自己的太阳系距离银心大约27万光年。)
其他星系的情况更不乐观。与银河系相比,大多数星系都更小,金属丰度也更低。因此,两位科学家指出,90%的星系里长伽马暴都太多,导致生命无法持续。不仅如此,在大爆炸后大约50亿年之内,所有星系都是如此,因此长伽马暴会导致宇宙中不可能存在任何生命。
90%的星系都是不『毛』之地吗?美国沃西本恩大学的物理学家布莱恩·托马斯(brian thomas)评论道,这话说得可能有点太过。他指出,皮兰和希梅内斯所说的伽马『射』线照『射』确实会造成不小的破坏,但不太可能消灭所有的微生物。“细菌和低等生命当然有可能从这样的事件中存活下来,”皮兰承认,“但对于更复杂的生命来说,伽马『射』线照『射』确实就像按下了重启按钮。你必须一切重头开始。”
皮兰说,他们的分析对于在其他行星上搜寻生命可能具有现实意义。几十年来,seti研究所的科学家一直在用『射』电望远镜,搜寻遥远恒星周围的行星上可能存在的智慧生命发出的信号。不过,seti的科学家主要搜寻的都是银河系中心的方向,因为那里的恒星更加密集。而那里正是伽马『射』线导致智慧生命无法生存的区域。皮兰说,“或许我们应该朝完全相反的方向去寻找。”
“其实你也动摇了,是不是?”舒云鹏苦笑道:“只不过你们有言在先,现在改口有失尊严!”
“你觉得我们会这么幼稚吗?”琼斯『露』『露』说:“只不过你那句话确实让我们震动很大:挣扎求生,甚至现在有了几百个正常的孩子,就此放弃是否合理,这才是我们所犹豫的。”